Retrieval-Augmented Generation (RAG)

Combine AI reasoning with external knowledge for smarter answers.

1. What is RAG?

RAG (Retrieval-Augmented Generation) combines **LLMs** with a **retrieval system** (like a vector database). The AI retrieves relevant information from external sources, then **generates a response** grounded in that knowledge.

Example: A user asks: "What is the latest guideline on AI ethics?" RAG retrieves current ethical frameworks from a knowledge base and generates a summarized answer.

2. How RAG Works

  1. Convert documents into embeddings (vectors).
  2. Store embeddings in a vector database.
  3. User query is converted to a vector.
  4. Retrieve top-k similar vectors from DB.
  5. Pass retrieved context to LLM for generation.
This approach makes AI answers **accurate, up-to-date, and domain-specific**.

3. Simple Python Example (LangChain + FAISS)

from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI

# Create embeddings
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.load_local("my_faiss_index", embeddings)

# Create RAG QA chain
qa = RetrievalQA.from_chain_type(
    llm=OpenAI(),
    chain_type="stuff",
    retriever=vectorstore.as_retriever()
)

# Ask a question
query = "Explain responsible AI guidelines."
answer = qa.run(query)
print(answer)
      
The system retrieves relevant knowledge and generates a precise answer. This demonstrates the **power of combining retrieval + generation**.

4. Applications

5. Try It Yourself

Take a set of documents (like articles or PDFs), create embeddings, store in FAISS or Milvus, then build a RAG system with an LLM. Test queries and observe how retrieved context improves answers.

6. Inspirational Quote

"Knowledge is powerful, but context makes it wise." β€” RAG Philosophy